

Approximation Algorithms

Lecture 4

Last Time

- ❑ Dual Fitting
- ❑ Randomized Rounding

Last Time

- ❑ Dual Fitting
- ❑ Randomized Rounding

Today

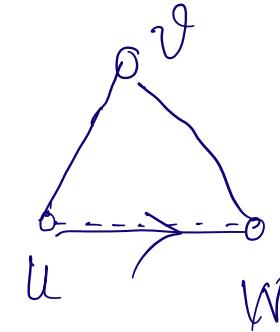
Greedy algorithms for:

- ❑ the k -Center problem
- ❑ the metric TSP problem

Christofides-Serdyukov approximation algorithm for metric TSP

k -Center problem

- Given a complete undirected graph on n vertices with lengths on edges
- Length of edge $\{u, v\}$ is $\ell(u, v)$ for $u \neq v$
- Lengths satisfy triangle inequality:
 - For $u, v, w \in [n]$, it holds that $\ell(u, v) + \ell(v, w) \geq \ell(u, w)$
 -

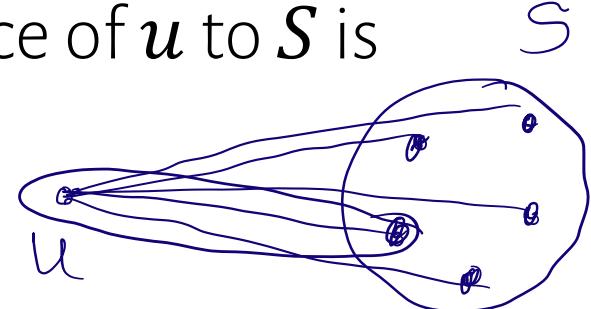


k -Center problem

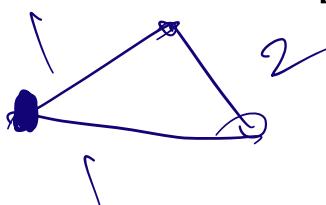
- Given a complete undirected graph on n vertices with lengths on edges
- Length of edge $\{u, v\}$ is $\ell(u, v)$ for $u \neq v$
- Lengths satisfy triangle inequality:
 - For $u, v, w \in [n]$, it holds that $\ell(u, v) + \ell(v, w) \geq \ell(u, w)$
- For a vertex u and set $S \subseteq [n]$ of vertices, the distance of u to S is

$$\ell(u, S) = \min_{v \in S} \ell(u, v)$$

*similarity measure
by w vertices
objects*



- Goal: Output a set S of k “centers” such that $\max_{u \in [n]} \ell(u, S)$ is minimized



6

0

0

0

0

0

0

0

0

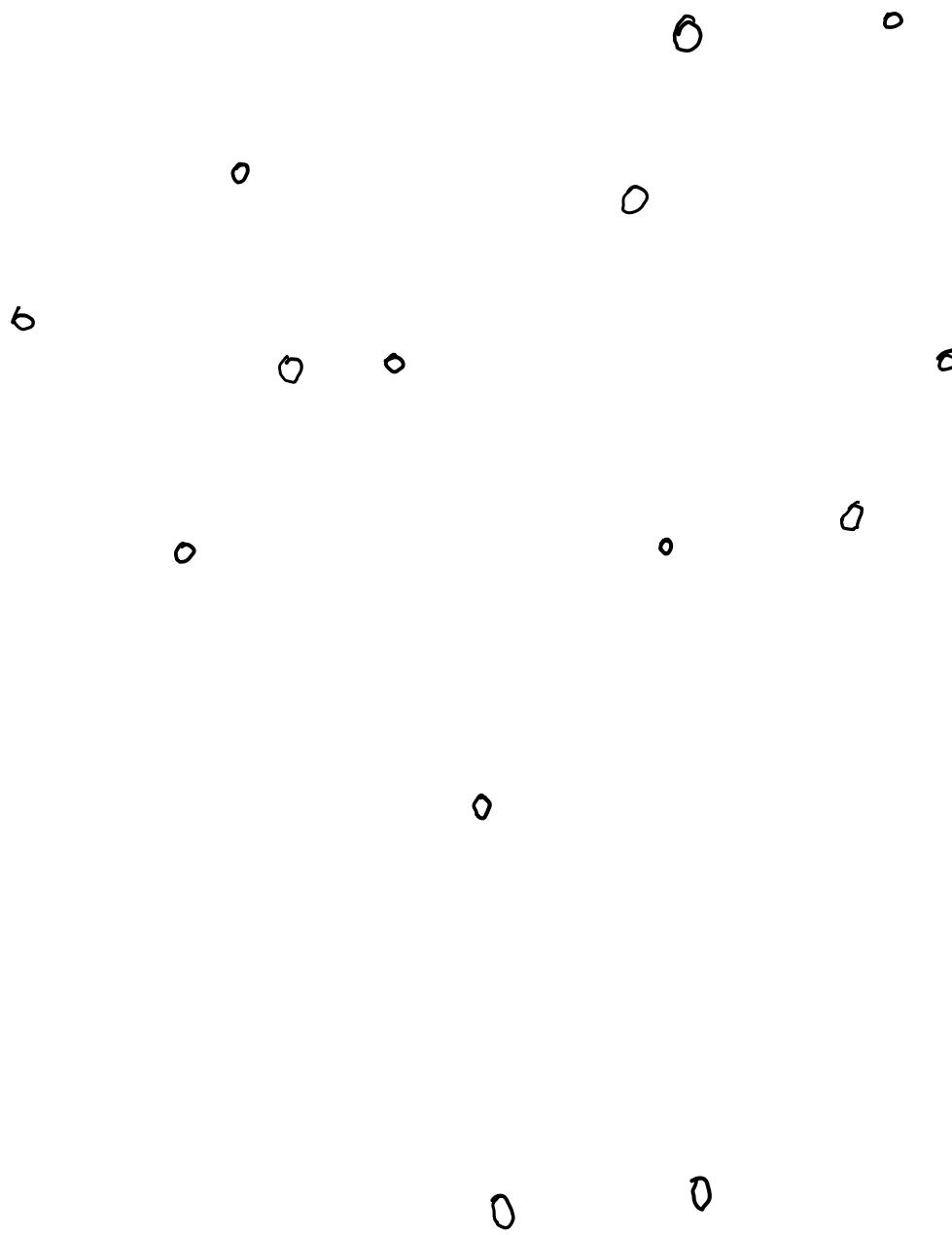
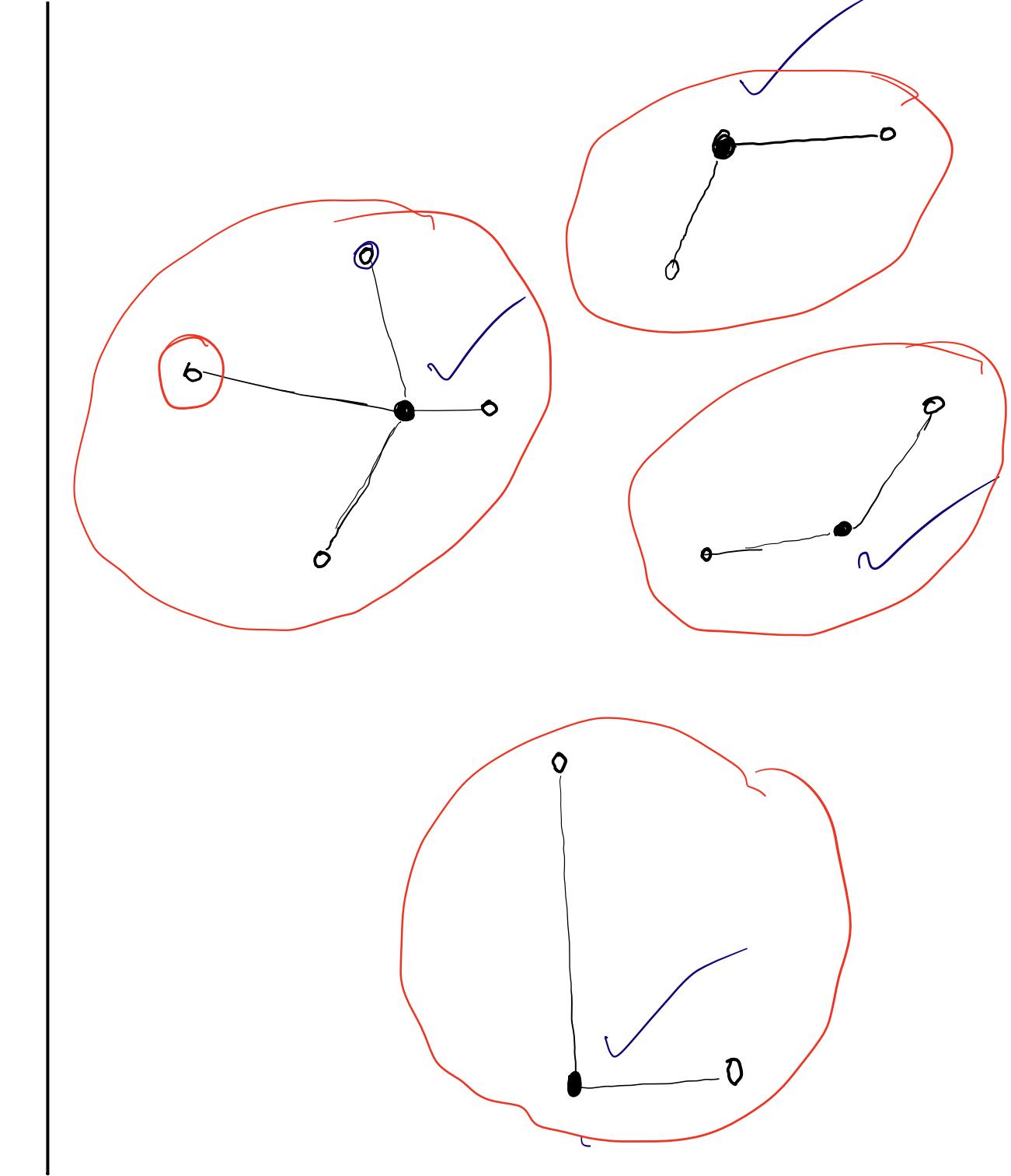
0

0

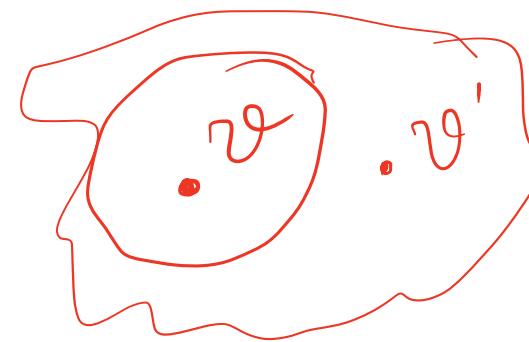
0

0

0

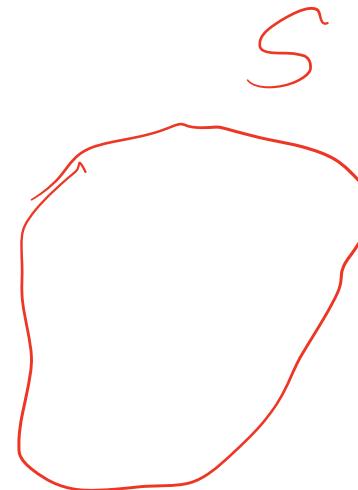


Algorithm



- Pick an arbitrary vertex $v \in [n]$ and $S \leftarrow \{v\}$
- while $|S| \leq k$:
 - Pick the vertex $w \in [n]$ that maximizes $\ell(w, S)$
 - $S \leftarrow S \cup \{w\}$
- Output S

• w



Algorithm

- Pick an arbitrary vertex $v \in [n]$ and $S \leftarrow \{v\}$
- while $|S| \leq k$:
 - Pick the vertex $w \in [n]$ that maximizes $\ell(w, S)$
 - $S \leftarrow S \cup \{w\}$
- Output S

Suppose the optimal radius is γ^*

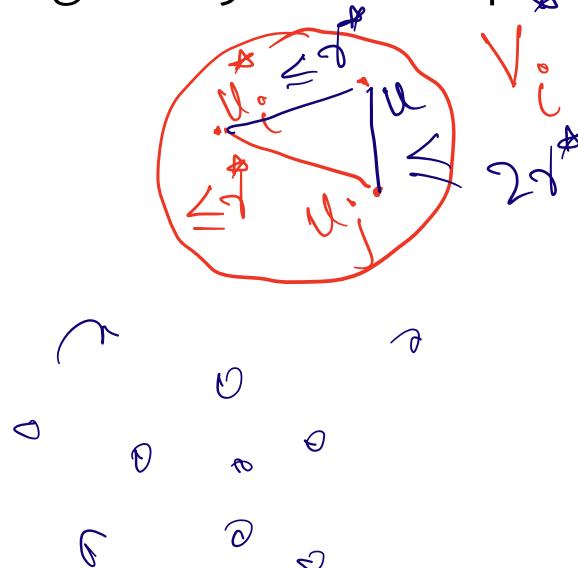
Our solution

has radius $\leq 2\gamma^*$

This greedy algorithm gives a 2-approximation for the k -center problem.

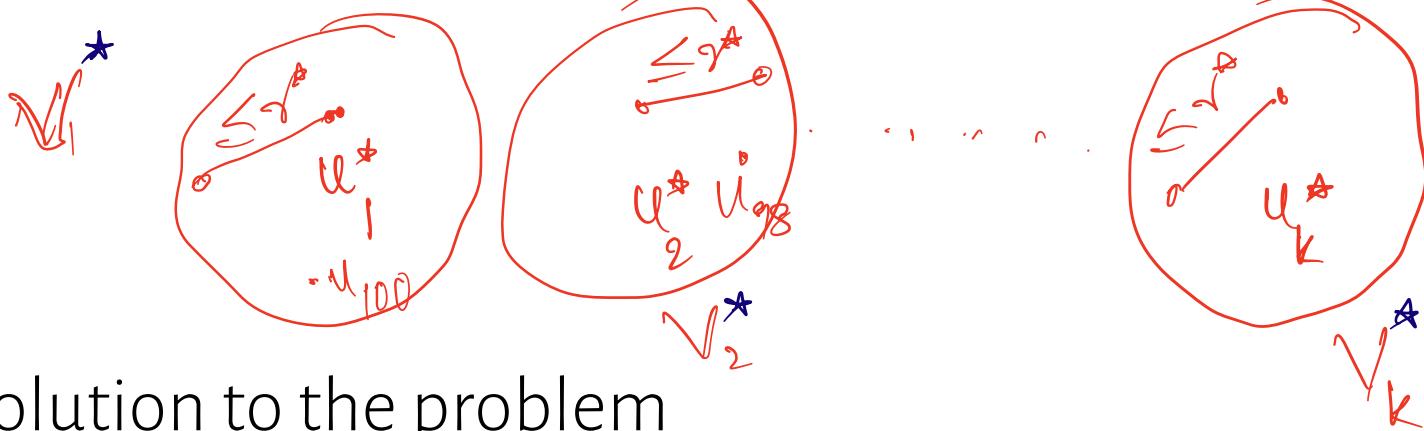
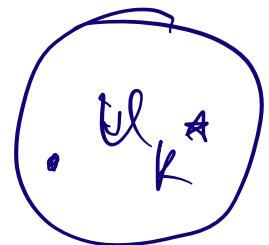
Analysis

- Let u_1^*, \dots, u_k^* be an optimal solution to the problem
- These centers partition $[n]$ into k clusters V_1^*, \dots, V_k^*
- Let optimal radius be r^*
- Let u_1, \dots, u_k be the centers picked by the greedy
- If there is one greedy-center per optimal cluster, then
- Otherwise



distance greedy

$\leq 2r$



Consider the first greedy center u_j s.t. $u_j \in V_i^*$ for $j < j'$

$$u_j \in V_i^*$$

and

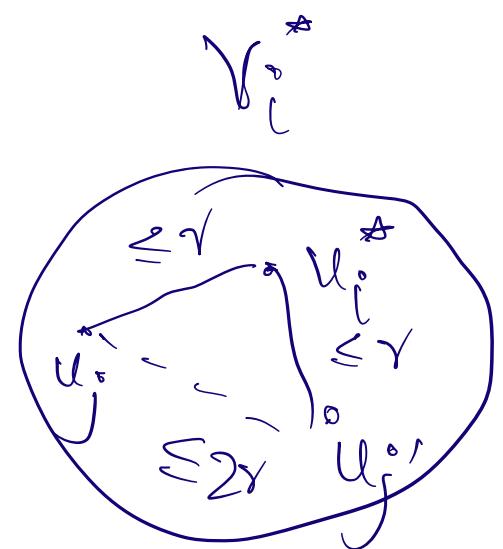
$$u_{j'} \in V_i^*$$

greedy-centers

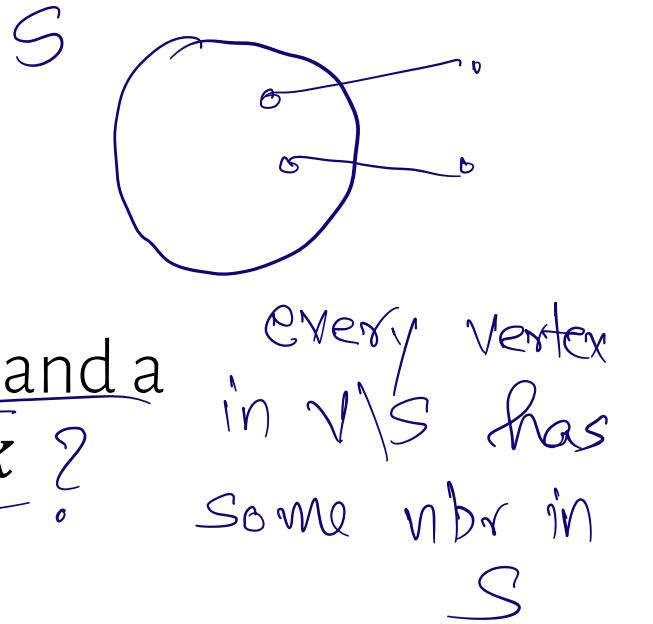
$$l(u_j, u_{j'}) \leq 2\gamma^*$$

Now, u_j was the point that was furthest from all $v \in [n]$ greedy-centers so far

$$l(v, S) \leq l(u_j, S) \leq l(u_j, u_{j'})$$



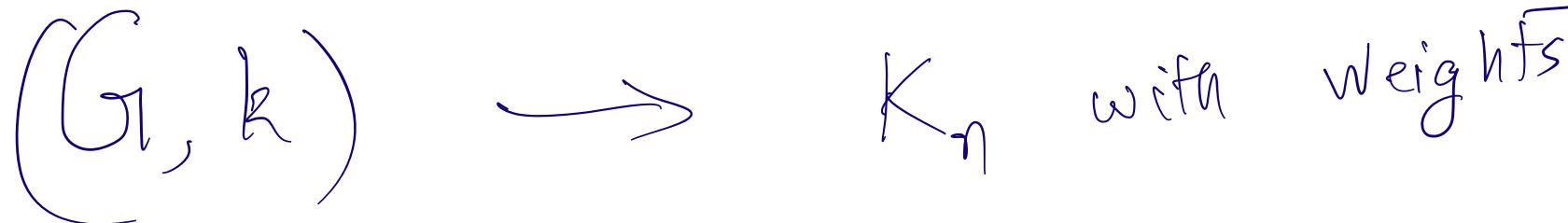
- It is NP-hard to approximate within a factor better than 2



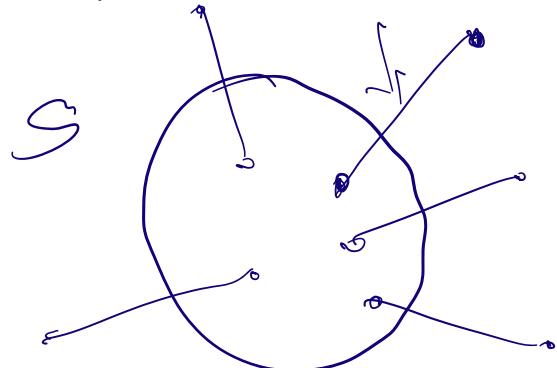
- Reduction from dominating set problem: Given a graph G and a parameter k , is there a dominating set in G of size at most k ?

- Construct a complete graph with weight 1 for edges and weight 2 for nonedges in G

- If we can approximate k -center in this graph to a factor of $\rho < 2$, then we can solve the dominating set problem exactly.



* Suppose G has a dom. set of size $\leq k$



this same set
(plus some
spurious
vertices)

is a soln- to
k-center problem
instance with
radius 1.

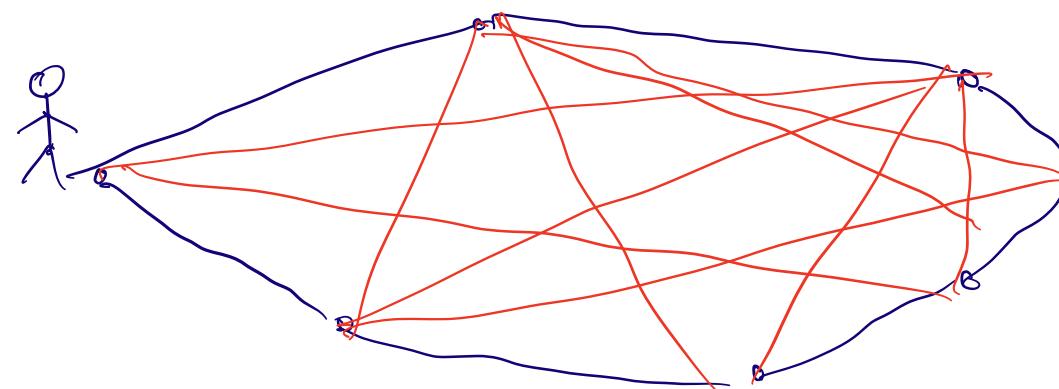
* Suppose G does not have a dom-set of size $\leq k$, then the opt. radius is 2 for k-center in a ^{insn} _a instance

Metric Travelling Salesman Problem (TSP)

- Given a complete undirected graph on n vertices with costs on edges
- Cost of edge $\{u, v\}$ is $\ell(u, v)$ for $u \neq v$
- Costs satisfy triangle inequality:
 - For $u, v, w \in [n]$, it holds that $\ell(u, v) + \ell(v, w) \geq \ell(u, w)$
 -

Metric Travelling Salesman Problem (TSP)

- Given a complete undirected graph on n vertices with costs on edges
- Cost of edge $\{u, v\}$ is $\ell(u, v)$ for $u \neq v$
- Costs satisfy triangle inequality:
 - For $u, v, w \in [n]$, it holds that $\ell(u, v) + \ell(v, w) \geq \ell(u, w)$
- **Goal:** Find a tour of minimum total cost that visits every vertex exactly once and returns to the starting vertex



- What is the state of the art?
- NP hard to approximate within a factor of $\frac{123}{122} = 1.008\dots$

[Karpinski, Lampis, Schmied '15]

- $\frac{3}{2}$ → 1.5 – ϵ factor approximation algorithm for some $\epsilon \lessdot 10^{-36}$

[Karlin, Klein, Oveis Gharan '21]

- What is the state of the art?
- NP hard to approximate within a factor of $\frac{123}{122}$

[Karpinski, Lampis, Schmied '15]

- $\frac{3}{2} - \epsilon$ factor approximation algorithm for some $\epsilon > 10^{-36}$

[Karlin, Klein, Oveis Gharan '21]

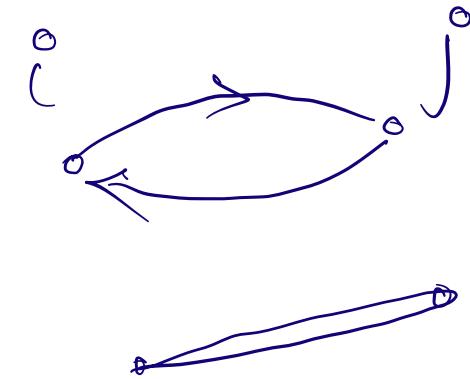
- Today: $\frac{3}{2}$ approximation algorithm by

[Christofides '76] & [Serdyukov '78]

↓
US

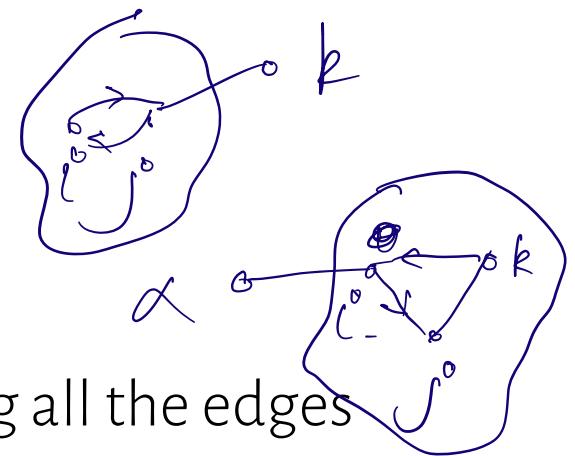
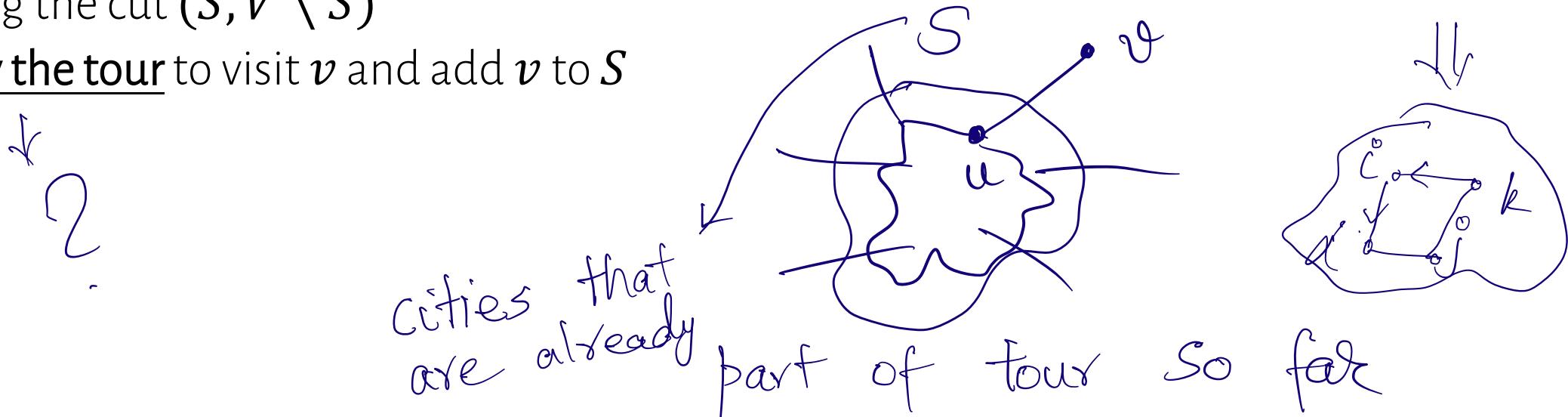
↑
USSR

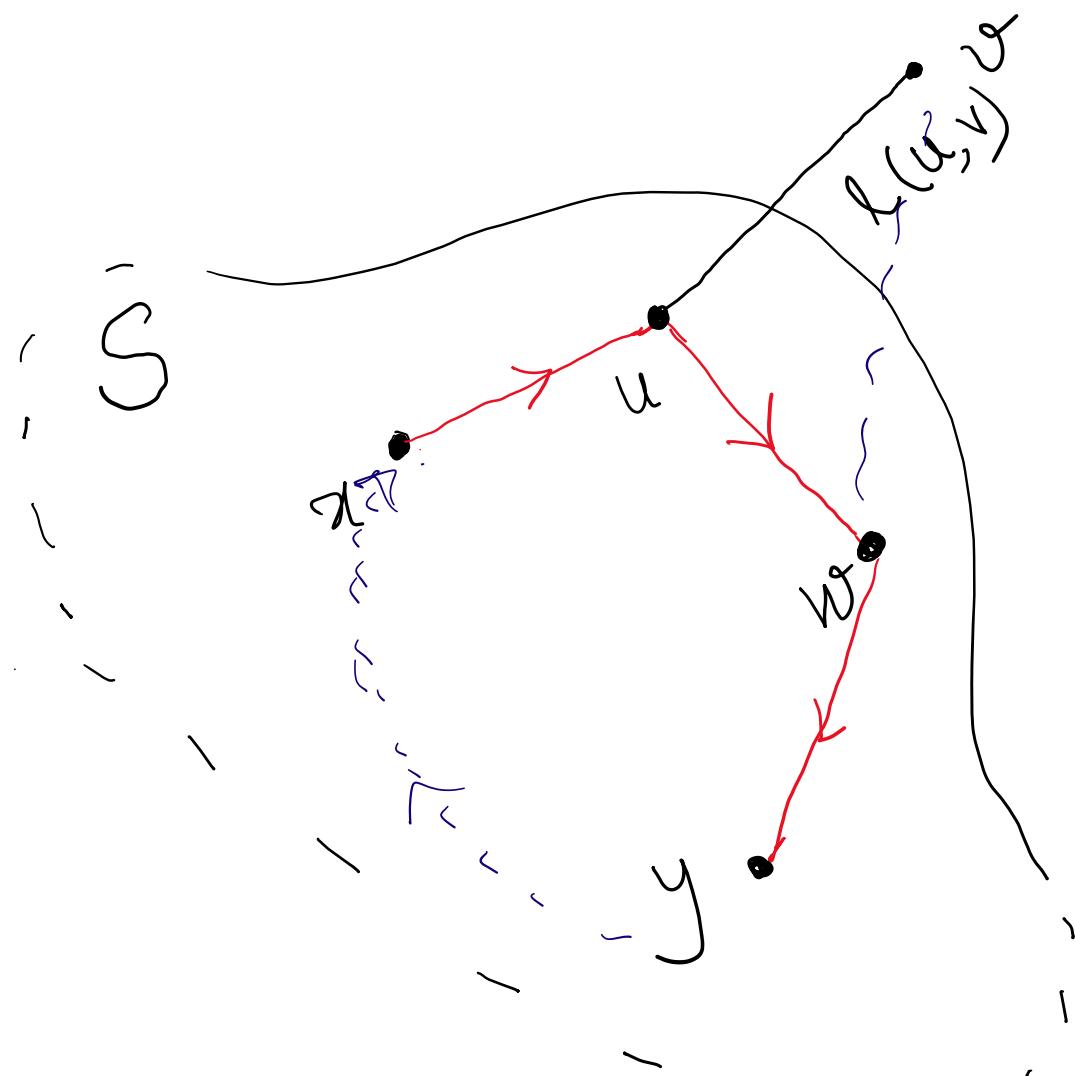
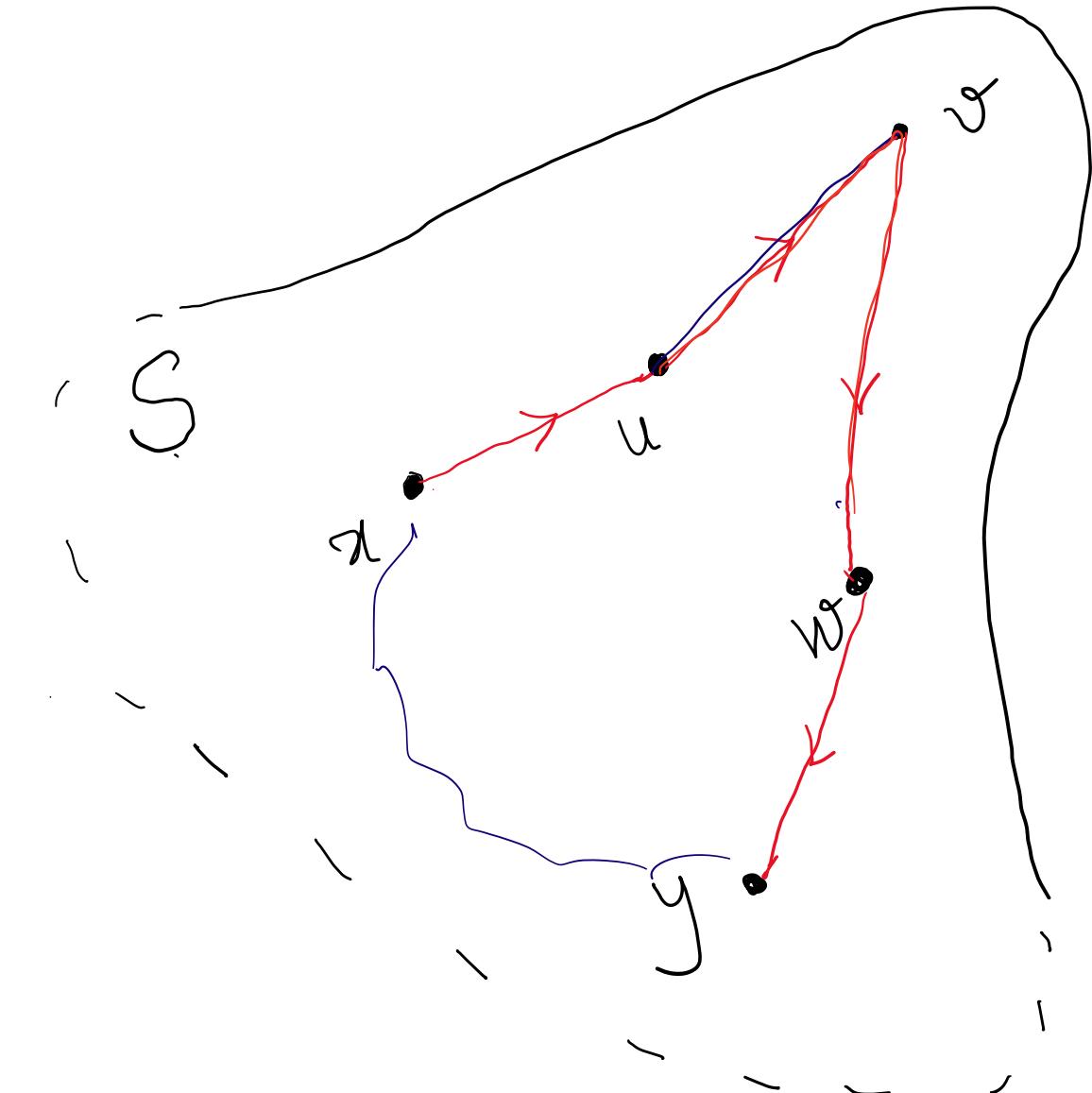
- First result: 2-factor approximation for metric TSP



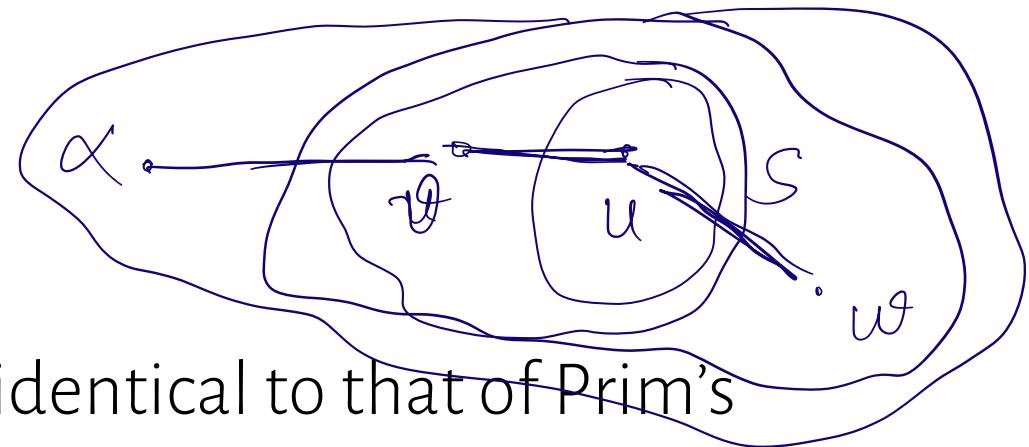
Greedy algorithm

- Start with a least cost edge $\ell(i, j)$, set $S \leftarrow \{i, j\}$ and let the tour be $i \rightarrow j \rightarrow i$
- while $|S| < n$
 - Let $u \in S, v \notin S$ be such that $\ell(u, v)$ is the least cost edge among all the edges crossing the cut $(S, V \setminus S)$
 - Modify the tour to visit v and add v to S

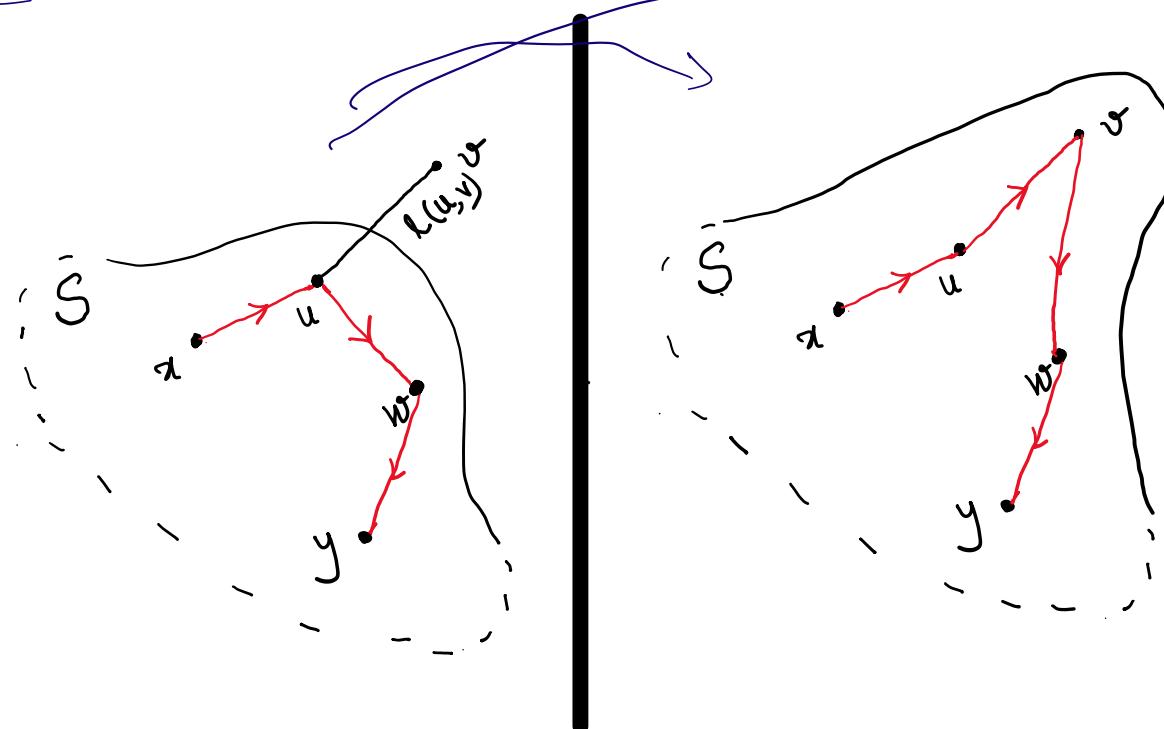
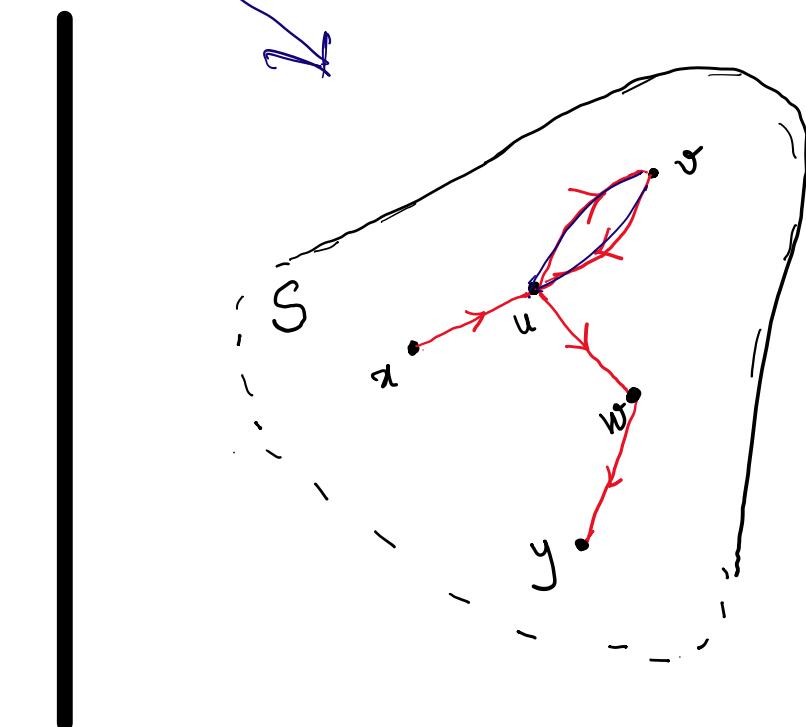


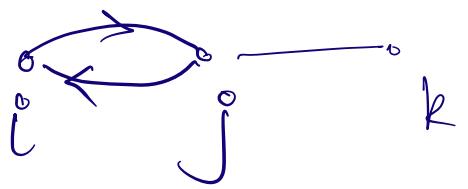
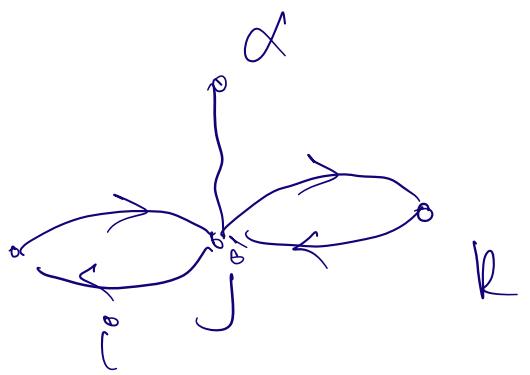
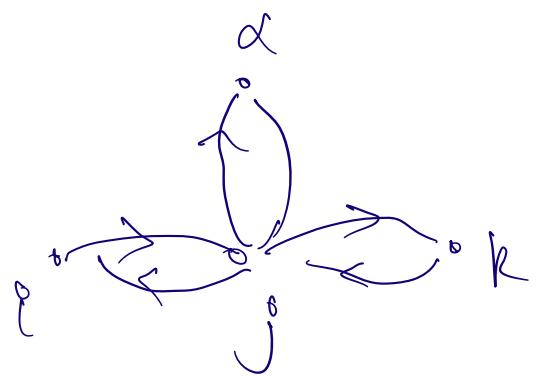


Why is this a 2-approximation algorithm?

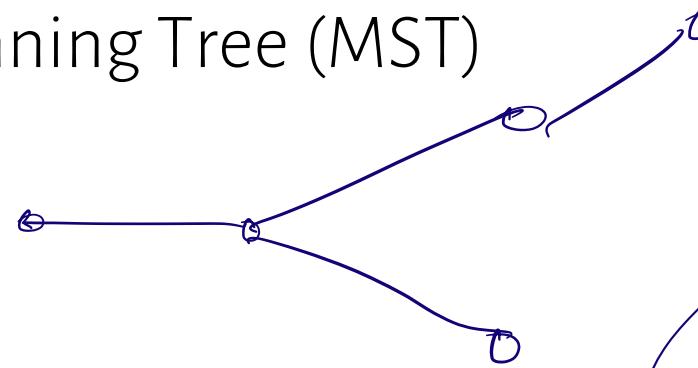


- Selecting the cut-edges in each iteration is identical to that of Prim's algorithm
- Consider a different walk whose total cost is an upper bound on the cost of the tour output by the algorithm

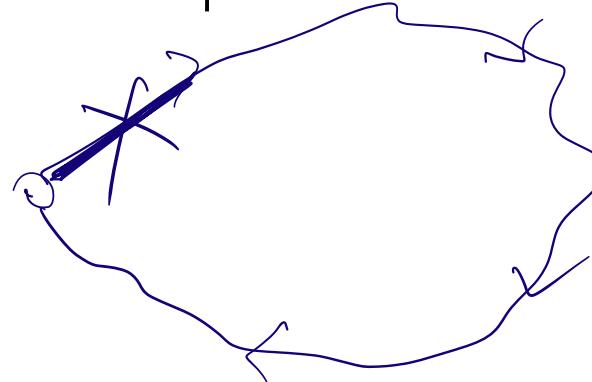
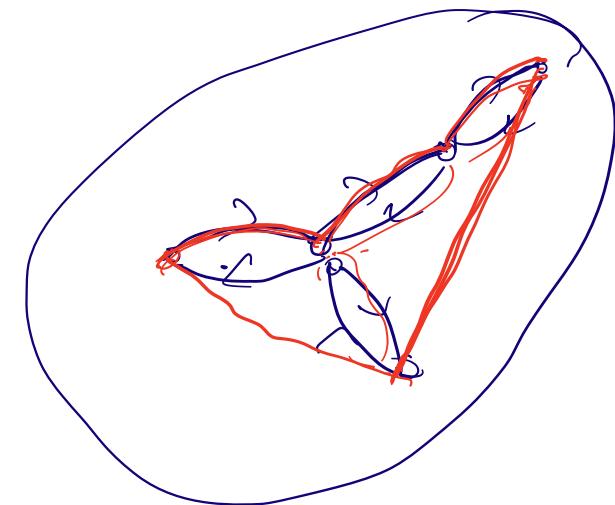




- Cost of new walk = $2 \cdot$ cost of Min Spanning Tree (MST)



□ Cost of any MST \leq Cost of optimal TSP = OPT



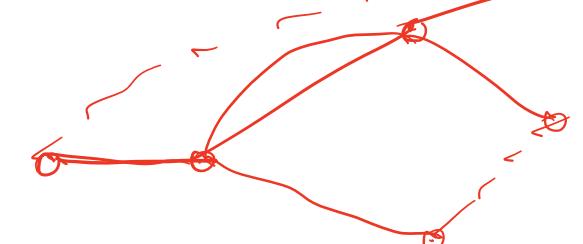
☐ Cost of tour output by greedy \leq Cost of new walk

$$= 2 \cdot \text{Cost of MST} \leq 2 \cdot \text{OPT}$$

- Improving the approximation factor: A perspective change
- What is the algorithm doing?
 - Compute an MST of the graph
 - Replace each edge in MST with two copies of itself
 - Find a Eulerian tour on this graph
 - Use shortcuts to avoid revisiting vertices
- Can we modify the MST to be Eulerian without doubling its cost?

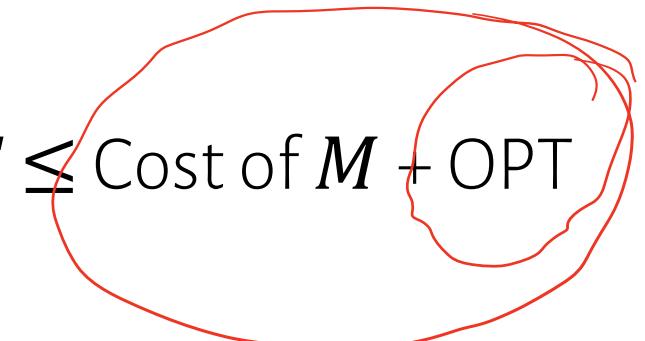
- Main problem: Odd degree vertices in the MST T
- We want all vertices to have even degree to have a Eulerian tour
- But there are an even number of odd degree vertices in any graph
- Idea: Find a perfect matching among odd degree vertices O and add the edges of the matching to T

- Pick the min cost matching M



- Total cost of a Eulerian tour is $\overline{\text{Cost of } M + \text{Cost of } T} \leq \text{Cost of } M + \text{OPT}$

$T \cup M$ is Eulerian



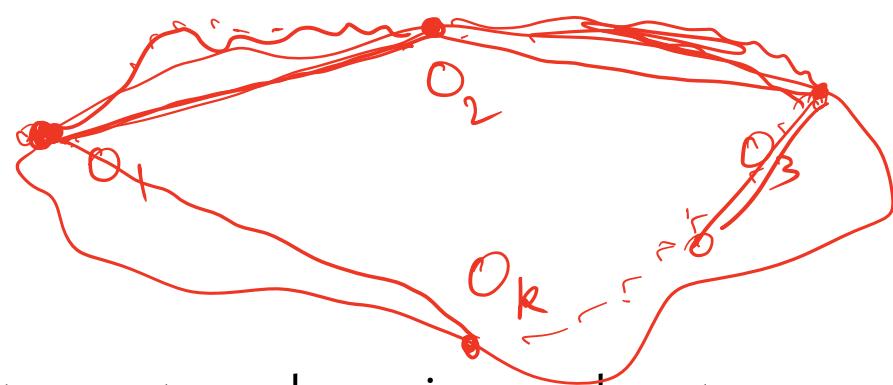
$$\leq \text{OPT} + \frac{\text{OPT}}{2} \geq \frac{3}{2} \text{OPT}$$

- Claim: Cost of $M \leq \text{OPT}/2$

optimal tour

- Consider a TSP restricted to the odd degree vertices O

- The cost of such a TSP is at most OPT



TSP optimal tour over all vertices

- If we pick alternate edges in such a tour, we get a perfect matching of O
- One of the two matchings has cost at most $\text{OPT}/2$

$\Rightarrow \exists$ a perfect matching on O
with cost $\leq \text{OPT}/2$

- What about general TSP?

↳ no Δ^k inequality

- Even a $O(2^n)$ -factor approximation algorithm will imply $P = NP$

- Proof?

Reading Exercise!